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Massless particle states with momentum k" :

J.k|k,h) = hlk, ) helicity

eigenstate
H/_/

R

How do Lorentz-transformations affect helicity
eigenstates?

Simplest: look at Ak =Ek.



Simplest: look at Ak =k.
— rotation about k axis (generated by R)

— transverse rotation+boost, generated by

T172 — 51,2.(12 X E—I— jko)

L'rH‘Ie Grauf Z~a%)s rototions

Lﬁh

(x/y) (4/x)
Baan + Ro"‘m‘l‘th



Simplest: look at Ak=k.
— Gotation about k axis (generated by R))

— transverse rotation+boost, generated by

T1,2 — 51,2.(12 X E—I— jko)

Action of rotations on states is simple — we
defined |k, h) to be R-eigenstates:

€i9RV{7, h> _ 6i9h|]€, h>

...what about T's?



Simplest: look at Ak =k.
— rotation about k axis (generated by R)

— (transverse rotation+boost, generated by’

T1,2 — 51,2.(12 X E—I— jko)

o J

Combinations T = T £ ¢T5 raise and lower
helicity by one unit:

R, T.]=+T.

T,, T | =0

T_:‘k, h> — p|]{?, h =4 1>

\ units of momentum




4 )
_ ezbaTa,|]{;7 h> — Zth/(b)V{, h/>
h/
Dppr (b) ~ Jh—nAp|b])
- /

Mix under Lorentz! (like massive polarizations)
unless we enforce p=0

Wigner’s “continuous-spin’ representations




More covariantly:

| S Z— 14elea
WH = Letvro], P,

(components of W « T, T», and R)

W2|kvh>p = —p°|k, h),

Pp+#0:all integer h’s (or half-integer) present in
same representation

massive spin-s: W=|p, m) = —m?25(S + 1)|p, m)
p=0 helicity h: (W" — hP*)|k, h) = 0



What features of long-range forces are
inevitable consequences of Poincare+Unitarity?

Massless bosons

0 CSPs W2
h=0
h=]
h=2
h=3
h=4

Much is. known about the p=0 branch.
What about p#£0?
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What features of long-range forces are
inevitable consequences of Poincare+Unitarity?

Massless bosons

0 CSP
Oy |2

_b=0 not radiatively stable
h=1

i 2:| coupled to conserved charges

b=z no consistent couplings strong enough
bh=4" to mediate |/r forces (Weinberg 1960s)

/

Much is known about the p=0 branch.
What about p£0?



What features of long-range forces are
inevitable consequences of Poincare+Unitarity?

Massless bosons

0 CSP
O —— STV,

0 If CSPs can mediate long-range
| forces, how do they behave!
2

:)'ﬁ:'

How does the p—0 limit work?

What is the p#0 analogue of the
restriction to h=0, I, 2?

Are p#0 theories physically viable?
How can they be tested!?



Outline

|. Physical picture & Motivation for p+0
“Continuous-spin’ particles (CSPs)

2. Evidence for (tree) interactions and their
consequences

3. Gauge Field Theory (an intro)

4. Conclusions



Amplitudes and Their Implications

Lorentz + Unitarity fix single-CSP emission amplitudes
almost uniquely

 Correspondence with standard helicity
amplitudes when Ecsp»pv

* Allows viable approximate thermodynamics



High-Helicity Soft Limits

P

n

‘ S. (kap)
Izﬂ.-miex it ook

must transform like |k, a),

Weinberg “Soft Theorems”™:
For h>2, no Lorentz-covariant solution

Are there analogous constraints on CSPs !



Single-CSP states: Lorentz Transformations

Helicity/spin basis

— ho rotation
N 1) _ e[ h) eigenstate
0) — \ . .
— Tn-w (PIBDI) FaeSERes”

(h|R") = Onn



Single-CSP states: Lorentz Transformations

“Angle” basis |¢) = >, €"?|h) =E; plane-wave

U R
% — \ ez'l;.t_;b ‘¢> translation
eigenstate

.~ .-
______

ol = (616} = 3(¢ — &)



Single-CSP states: Lorentz Transformations

“Angle” basis |¢) = >, €"?|h) =E; plane-wave

rotations

tqb |¢> /’ |¢ T 9> miX states
% > \ €i5.5¢‘¢> transliation

eigenstate

......

~
______

Covariantly: |k, €) withe.k =0,¢* = —1
— equivalence |k, € + ak) >~ e'P |k, €)
— basis |k, €.) witheo = 0 <> |k, d)

(define e.(k, @) )
— simple Lorentz action|k, €) — |Ak, A¢)



Single-CSP emission in the soft limit

/"W:q—ﬂ—%o —.< Z \qu

e ..

x O (KJQIP"

"’zg, KHe
must transform like |k, a),

s({k, e+ ak},p;) = e'"*s({k, e}, p;)

D;.€

= S({k7€}7pi) — f(kpz)ezpp,jk

[Schuster & NT 1302.1198]




A simple tree amplitude:

K.d

)

. qu-ec(k¢)
where s({k,gb},pi) _ f(k.pi)ew .k

(f = constant a; for most
of this talk, or monomial)

Only phase is ¢-dependent=> | %\AP is finite!



Ay (p3—|—13)2—|—ie ' S({]{,¢},p3)
+ Ay (p4+k)2+ze s(1k, d}, pa)

d¢ 2 S({k,¢},p3) | S({k,¢},p4) )
/ 4012 = 34k, 0} = N2 | SR + SR

_ wz( az|? | a4]? - 2Relazay|Jo(p|zi — zﬂ))
((p3 + k)22 ((pa+k)2)*  (p3+k)*(pa + k)

Singularities (only) at on-shell particle poles



Ay (p3—|—li)2—|—z'e ' S({k,¢},p3)
+ Asg- (p4_|_k)2_|_7,€ ({k ¢} p4)

S({k,¢},p3) | S({k,¢},p4) )
(ps + k)2 +ie  (pa+k)* +ie

/5 901412 = 34{k, O] = |\

B wQ( a2 | G |? | 2Re[a3aZ]Jo@>
((ps + k)22 ((pa+k)2)? " (b3 +k)2(pa + k)3

pz = correspondence parameter

(recover scalar result when pz—0)



Complex correspondence parameter z;:

reminiscent of Klein-Nishina, etc.
(€° = circular polarization w/ €°=0, €.k=0)

|~ Plsind .k
k|(p® — [p[cos ) NP

For 0~1, |z| ~ v/|Kk| so pz <1 is the limit of high-
energy radiation and/or non-relativistic emitters.

Lorentz-invariant quantities depend only on |zi—z;



Soft factors are simple in terms of z:

S({]{?,¢},pz) _ eipRe[eiqbzf,;]

Fourier
>

S({k, h},pz) — Jh(p‘zi‘)e—iharg(z)
= Ju(pzi)

Lorentz-invariant quantities depend only on |z/—z;]



Leading behavior at small z; (=high energy)

1.0f
0.8}

0.6f

|S(Zi7 h)|2 0.45-

Suppression follows from Taylor expansion of Jj,
Jp(z) ~ Z=(1—0(z%) +...)

h
2hh!




For minimal (f=const) soft factor and momenta > p,

A{k,h =0},p...) = Ascatar(1 — O(p2z)?)

The h#0 amplitudes are hierarchically smaller:

A({k,h =2n},p...) ~ Ascatar(pz)" /0! + ...

Helicity correspondence! [1302.3225 Schuster & NT]
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More general interactions!?

Next-simplest case: [ = p;.k

high-energy growth of f cancels propagator
suppression



More general interactions!?

Comags P

Btk

+ Rk
KJ/
i ]ffactor
A(12 — 34 — A, (B2 BB 7 1
(12 — 34{k,h}) 4_2p3.k—|—Z€J(z)+(3H )
A
Ap—o = 2—: (g3 + q1) + O(pz)?]

Leading term violates perturbative unitarity at
energies > —a UV cutoff




More general interactions!?

Comags P

Btk

+ Rk
KJ/
i )ffactor
A(12 — 34 — A, (B2 BB 7 1
(12 — 34{k,h}) 4_2p3.k—I—Z€J(Z)_|—(3H )
A
Ap—o = 2—: (g3 + q1) + O(pz)?]

Leading term violates perturbative unitarity at
energies >u —a UV cutoff

..unless g3+4g4=0 (g is conserved “charge”)



Gauge Correspondence

~

p;.k
s(1k,h},pi) = qi p Jn(pzi)

If gi is conserved in all interactions, the high-energy
growth cancels in sum over all legs.

sp—o = cancel 4+ g;€’ .p; O(pz)

Sh=1 = qi€; .pi(1 — O(pz)Q)
Sh=2 = qi€..pi O(pz) etc.

Charge conservation from perturbative unitarity
implies h=+1 dominance



Gravity Correspondence

s(1k, h},pi) = ]\;P (p;§ | p?/ll) Jn(pzi)

Similarly, quadratic term naively (pi.k)?/4° but

equivalence principle tames high-energy growth of
h=0 and h=I interactions

= h=2 dominates” for p<E<Mp (with graviton-
like amplitude) and cutoff delayed to 413/p?

* gravitational-strength h=0 couplings also generated by
simplest quadratic f, but not required



Helicity Correspondence Summary

Lorentz invariance and unitarity allow simple (but
highly constrained) amplitudes:

— For generic f, h=0 interaction dominates at £>p

— Constrained cases where h=1| (2) dominate

Charge conservation/equivalence principle
from perturbative unitarity

Approximated by usual helicity amplitudes

— No correspondence above h=2

Higher powers of p.k are like higher-
derivative couplings; h>2 never dominates



Thermodynamics

Infinite no. of polarizations = infinite vacuum heat
capacity[Wigner '62]

Does coupling to CSPs make a system supercool?

— Do all CSP states reach thermal equil.?
— What about low-energy phase-space, E~p!

Correspondence suggests both can be avoided

(correspondence beyond soft factors is only a
conjecture, but plausibly protected by unitarity)



Thermodynamics in a Nutshell
E~T>p = small z

i

on, o< |s(z, h)|? 0.82-
~ oo(pven /T)?" /R zj

0.2f

h=0 has microscopic ool
thermalization time 7o,

For h#0, Th ~ To(T/pvin)>" /h\? > 7

Long-lived thermal systems = bound on p




Thermodynamics: Early Universe

If photon is helicity-| part of a CSP with gauge
correspondence, how small must its p be!

2h 2
Th NTQ(T/pUth) /h'
h# | production dominated by Compton at T~MeV

Th=o0.2 ~ To(T/p)> > H *(T)

= For p = meV, CSP partner polarizations don’t
thermalize



Thermodynamics: Closer Look
Phase-space density of h'th CSP mode at time t :

T o 2/ dny/dE
Th _ nz<0-Breme>Jh(@) 1 nh/
dE dE E dn/dE.,
Partially Equilibrated CSP Density
006, e . | " 3
0.05 ( den ;gl%ggg)]) T'h (t) ~ Ly, (t)
0.04 ‘ N Nk 4
=15 003 Ph t Eh(t)

0.02

First two factors
dictate scaling

001

00857 01 02 03 04 05 06
(CSP energy)/T



/ 0 2 / 1/2h
J — 1 *
(E*) (E) = b p(m%)

E;_, < T is old non-thermalization condition

N . Partially Equilibrated CSP Density
E" decreases withn P

and — p/h at large h

(arb. units)

Total entropy (energy)
density in all high-h gSPs

~ N (p/h)*® >

0.0 0.2 04 0.6 0.8 1.0

highly convergent (CSP energy)/T

dE

=
o




Solar Cooling Constraint on CSP Photon
Luminosity ~ 10%% erg/s

T ~ 107 K, density ~ 5 g/cm?

- Power (prem) ~ 107 erg/s




Solar Cooling Constraint on CSP Photon
Luminosity ~ 10%% erg/s

T ~ 107 K, density ~ 5 g/cm?

- Power (prem) ~ 107 erg/s

If one h#=1 CSP brem’d per 10%° y’s
luminosity and stellar evolution would
change by O(0.1).

p? <107%m, T ~ (10~ %eV)?

p~t > 10m

Lower-energy CSPs and
cooler stars = few-10x stronger bound on p




CSP Thermodynamics: Bottom Line

Helicity correspondence of amplitudes =
— Helicity-like physics for E>pv
— Viable approximate thermodynamics

Thermodynamic corrections from p#0 are
— calculable

— dominated by one nearest-neighbor helicity

e.g. for CSP photon:
— early-universe 0g.«1 if p<10* eV

— tightest known constraint: stellar cooling =
p=107 eV.



Summary — CSP Amplitudes

+ Theory

- Soft factor limits exist (unlike high helicity)

— Tree level CSP scattering amplitudes with
appropriate factorization limits exist

— Perturbative unitarity = any CSP theory will be
approximated by a gauge theory with h=0,1,2 in
the p—0 limit (helicity correspondence)

+ Phenomenology

— correspondence = known gauge theories may be
degenerate limits of CSP theories

— calculable approximate thermodynamics

— tests in classical limit are important — presently
limited by theoretical control, but may be testable soon



Outline

|. Physical picture & Motivation for p+0
“Continuous-spin’ particles (CSPs)
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Spacetime interpretation of CSPs!?

Try to pick up where S-matrix arguments left off
— Multi-emission, CSP exchange
— Classical limit

— Unfamiliar phase structure in soft factors
where does it come from!
is it local enough to guarantee causality?

Aim for manifest helicity correspondence

Connect to tensor-field e.o.m. for gauge th’y
All spins on same footing (in free theory)



Fronsdal Formalism

Consider a “polynomial” field in an auxiliary spin-
space

1 1
Y(r,w) = ¢(x) + WA, (x) + §w“w”hw + aw“w”wPGWp...

Equation of motion for components:

—y0 —J =0
' (UzA, —0,0-A—J,) =0
wHw"” ( 2Py + o — J_W) = (

etc...

Unifying structure!



Fronsdal Equation

Consider a “polynomial” field in an auxiliary spin-
space

1 1
V(r,w) = ¢(x) +w'A,(x) + iw“w”hw + —wrw WG,

3!
Double-traceless condition@zp —

Fronsdal eom:

(— -+ w-0,0, - @U—%(w . 0y)* w) Y(w,x) = J(w,x)

Gauge invariance: 09 = iw - J,€ with
(

Trace conditions = right d.o.f. at ranks >3




Fronsdal @ CSPs!?

At least two generalizations of Fronsdal equations
contain CSPs:

Common ingredients:
|. Deformed gauge redundancy §v) = (iw - 0, +p)e

2. Deform trace conditions (@3—1)2¢ =0

(cf Bekaert and Mcglad 06) — one CSP

Generalize awagz from olglnomial Y:

(Schuster and NT, arXiv:1302. 22% |
P(x,w) #= o(x) + WA, (z) + iw“w”hw — gw“w”wPGWp...

— CSPs with all p


http://arXiv.org/abs/arXiv:1302.3225
http://arXiv.org/abs/arXiv:1302.3225

CSP Covariant Equation of Motion

[PS and Toro; Bekaert and Mourad]

1 1
PV(r,w) =¢(z) + WA, () + §w“w”hw + gw“w”wPGWp...
. 2 2
Double-traceless condition (0. —1)7¢ = 0

(~0ut (@ 000, 00 (- 0u9P(C-D) Wl

= J(w, x)
Gauge invariance: 01 = (w - 0, +p)e
with (0°—1)e =0



The Need for Deformed Gauge Redundancy:

Helicity +h wavefunction,

_ 1 Hh
Vh = Wy - Wy € oL €
“Lowering” LG generator I" = —w.ke_.0,, + w.c_k.0,,
T p X Wy oo wy, € el EHn

Usual redundancy 01 = 1w - 0,.€ ensures ["_ 1)y, ~ ()

CSP redundancy 09 = (iw - O,+p)e€
allows 1" 1)y, >~ py, 4



Deformed trace condition/non-polynomial
branch?

No finite-rank tensor transforms as CSP state

“Lowering” LG generator I = —w.ke_.0,, + w.c_k.0,

(I_)™ annihilates all tensors of rank <m/2
but never annihilates CSP state, just lowers:

(T— )mwh = wh—m

= CSP wavefunctions have

infinite tower of non-zero tensor components
or non-tensor dependence on w



Relaxing polynomial restriction, it is natural to
interpret double-trace condition as localization to
null cone in Fourier-conjugate space:

~

b(n, ) = / e (w, 7)

(02)*1(w) = 0+ (*)*¢(n) = 0

Define ¥ in terms of unconstrained field:

P(n,x) =8 (n*)¢(n, x)

(similarly for gauge parameter)



In terms of the unconstrained field ¥ (n, x):

1
eom: —6&' (0?01 A A (6(nH)AY) =8 (n*)J
gauge variation: (W (n- 0z —31°A) e(n, x)

where A = 0,.0; + K

This eom is the variation of a quadratic, local, gauge-
invariant action that propagates CSPs of all p

5 / Fad'n [ (1)) + L3(n?) (Av)?]
+5’(77 ) J1
[Schuster & NT 1302.3225]




Physical Degrees of Freedom

Component Decomposition of ¢ near null cone:

770

—

Ul

Y(n,z) = A(7j, 2) + {=B(7f, z) + O((n°)?)

non-physical



Physical Degrees of Freedom

Component Decomposition of ¢ near null cone:

() = A(, ) + 1= B(i, z) + O((n*)?)

dynamical non-dynamical non-physical

Residual gauge freedom fixed by Coulomb-like
condition (_ﬁx-ﬁn +R)A =0

Straightforward canonical quantization (like
Coulomb-gauge QED) for background

= Physical d.o.f live on (D-2)-dimensional 771 plane



Physical Degrees of Freedom

1711 plane is Little-Group “momentum” space



Summary and Questions

Covariant field models of one or many CSPs

Gauge redundancy is crucial to consistency! (explains
failure of previous field theory constructions)
Smooth p—0 limit

Open questions

— Covariant action for one-CSP theory!?
eom & gauge-fixed Hamiltonian exist

— Appropriately conserved matter currents!’
connection to soft factors is a guide
— Are there local G-l operators!
— Coupling to gravity!?
Rapid progress towards a physically clear theory with
sharp predictions



Conclusions — Making Sense of CSPs

+ Phenomenology

— correspondence = CSPs more consistent than
they appear at first glance

— calculable approximate thermodynamics

— tests in classical limit are important — presently
limited by theoretical control, but may be testable soon

+ Theory

- want spacetime interpretation for CSPs,
interactions with matter and gravity

- found gauge field theories coupled to background
currents; many more questions

- worldline or extended object pictures?



Thanks!



Backup



Little Group Generators:

T - 551,2.(12 X E+jl<:0) R =J.k

T =T £:15

R, TL| =474 = raising and lowering
1 ‘kv h> — p::,h|k> == 1>

unitarity = Pth = P pi1

T, T_|]=0 = [prnl® = lp4 il

Remove phases by choice of basis

[back]



CSP Soft Factors and Unitarity

(ko) = Ttz = (£2) 3, (p%(};i;'p)j

Almost-everywhere analytic in p, £, €+ (power
series of J,) with isolated essential singularity at

z— 00 (i.e. k soft or collinear)

— Bounded (by 1) for all real momenta
=> no i€ deformation (unlike multi-pole)

— No spurious imaginary part in optical th'm

Also demand existence of multi-particle amplitudes
with consistent factorization limits...



Multi-CSP Amplitudes

k,n Kn
) k;n'
= o + + (ko>
] v K:ﬂ‘
K,n

Using soft factor ﬁ1:=const) as a sewing rule yields
candidate two-CSP amplitudes (and beyond{that

factorize appropriately and maintains scalar-
correspondence [PS & Toro 1302.1577]

For gauge- and gravity-correspondence, don’t know
general sewing rules yet (expect them to be more

complex)



Unitarity of CSP-Exchange Amplitudes

Candidate

{
M,y = 1 '0\/ Ewpakvppqcr)
/ """"" : kQ—I—zE kpk.g+ ap.gk?® + ..

I
LA
I

k*—0 limit fixed by unitarity;
ambiguity in O(k?) corrections

et 1 x k| 7
Correspondence limit: M, ~ , (1 _0 (/"VkQ ‘> )



Causality & Analyticity
Matter propagation through a background!?

no p?-dependent

‘E corrections from p+0
H(pz) — J\AAT_ -+ 4 e e .

work in progress



Matrix elements with “Stress Energy” Tensor

In contrast to Weinberg-Witten argument
forbidding high-helicity matrix elements with a

covariant stress-energy tensor
: <€¢/(p/)-k_e¢(p).k;>
p p’ .k p.k

(p', ' |TH (k)|p, @) = (pH'p" + p'*p” — p.p'gh")e

Continue to exhibit helicity correspondence — no
thermo. problem...physically odd (single-exchange
fwd. scattering mixes states maximall)%

Coupling CSP action to helicity-2 gravity could
be informative!

Don’t forget about graviton-correspondence CSP



Spinor Helicity analogue
(corresponds to “g-lightcone gauge” ¢)

p.o = A\ €4.0 X Zziz
_ (A
b= [AA]

Wavefunction

BTS2 E) = F((EN), [EN)) e LR+

Soft factor

S(AY, pe) = Y(A, €)|§O¢:p.55\d



